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INTRODUCTION

IN A RECENT paper [1], we have reported similarity solutions
for steady, non-Darcy convection over a horizontal surface
embedded in a saturated porous medium for the cases of
natural, mixed and forced convection. As pointed out by
Cheng [2] and Plumb [3], transverse thermal dispersion
effects may become very important when inertial effects are
prevalent. However, most previous studies [1, 4-7] on non-
Darcy convection, either for natural or mixed convection,
have not taken this effect into account. Only recently, Hong
et al. [8] reported a study of non-Darcy natural convection
along a vertical plate, in which thermal dispersion was in-
cluded. Their results show that both inertia and dispersion
are important at high Rayleigh numbers. Dispersion tends
to enhance the heat transfer, while inertial effects decrease
it. Whether heat transfer will increase, as compared to the
Darcy case, depends on the balance between these mech-
anisms.

It is the purpose of this study to re-examine our previous
results {1] by including thermal dispersion effects. Steady
non-Darcy convection, in the form of natural, mixed and
forced convection, is again considered for a heated horizontal
surface embedded in a saturated porous medium. Under the
assumed conditions, similarity solutions again exist for the
case of constant surface heat flux.

ANALYSIS

Consider a two-dimensional non-Darcy flow over a hori-
zontal, impermeable surface in a saturated porous medium.
Having invoked the Boussinesq and boundary-layer approxi-
mations, the governing equations based on the Ergun
formulation are given by
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o =a+ao. (3)
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The thermal dispersion effect is introduced by assuming the
effective thermal diffusivity a. to have two components: «
the molecular diffusivity and «’ the diffusivity due to thermal
dispersion. Following the linear model proposed by Plumb
[3], the dispersion diffusivity is proportional to the stream-
wise velocity component, that is

« = Cud @)

where C is a constant, which has a value ranging from 1/7

to 1/3. However, it has been pointed out by Hunt and Tien

[9] that the solution obtained by assuming a constant dis-

persion coefficient and neglecting the wall effects will provide

an upper bound for the estimation of heat transfer results.
The corresponding boundary conditions are

y=0, To=Tyo+A4Ax", v=0 (5)
u = O(natural convection) (6a)
(6b)
With the appropriate transformation, equations (1) and (2)
can be further reduced to a set of ordinary differential equa-
tions for which exact solutions are possible. The suitable

similarity variables for such a transformation are those
employed in the previous study [1], namely:

y-»o, T=T,,

u = U, = Bx™(mixed convection).

for natural convection

- '
n=(Ra)" % ™
¥ = a(Ra)'*f(n); ®)
for mixed convection
- Y
n=(Pe)iZ ®

¥ = a(Pe)"*f (n). (10)

Natural convection
After transformation, the resulting equations are given by
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These equations will be independent of x if 2 = 1/2, that is,
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constant defined in equation (5)

constant defined in equation (6b)

coefficient of the thermal dispersion effect
mean particle diameter or pore diameter
Ergun number, K a/dv

dimensionless stream function

acceleration of gravity

local heat transfer coefficient

effective thermal conductivity of the saturated
porous medium

K permeability

K’ inertial coefficient of the Ergun equation

local Nusselt number, hx/k

p  pressure

Pe  Peclet number, U x/a

Peclet number based on the pore diameter, U d/a
Rayleigh number, Kgp(T, — T.)x/av
Rayleigh number based on the pore diameter,
KgBAd*? oy

T  temperature

T, surface temperature

T, ambient temperature or free stream temperature

SmaRAawa

x>

Ly

NOMENCLATURE

u,v velocity components in the x- and y-directions
U  free stream velocity
x, y Cartesian coordinates.

Greek symbols
o, effective thermal diffusivity

o  molecular thermal diffusivity

o thermal diffusivity due to dispersion effect

B thermal expansion coefficient of fluid

n  independent similarity variable

6  dimensionless temperature, (T— T,,)/(T\,— T.,)

A constant defined in equation (5)

u  dynamic viscosity

v kinematic viscosity

p  fluid density

¥ stream function, equations (8) and (10).
Subscripts

€ effective properties

mx mixed convection

nc natural convection

0  properties related to Darcy flows.

the surface temperature varies with x /2. Thus, equations (11)
and (12) can be simplified to

4 ErRa) T+ M0 =0 a3)

W O—f0) =0+ CRa)> (S0 +f"8)  (14)

where Ra, is the modified Rayleigh number based on the
mean pore diameter. The grouping Er is a new dimensionless
parameter which we tentatively name the Ergun number. It
is defined as Er = K’a/dv. The Ergun number characterizes
the porous system under investigation since it represents the
structure of the porous matrix, K'/d, and the thermophysical
properties of the porous medium, a/v. This parameter is a
direct measurement of inertial effects, and its importance has
also been recognized by Prasad and Tuntomo [10], in a study
of inertial effects on natural convection in a vertical cavity.
The corresponding boundary conditions are

n=0, 8=1, f=0
n—ow, 0=0, f =0

(15)
(16)

(a)

F1G. 1. Dimensionless velocity profiles for non-Darcy natural convection with thermal dispersion effects.

Mixed convection
With the similarity variables given in equations (9) and
(10), the governing equations are transformed to

ra B iy =

Y2,
ATl

1 Usd
=TS = OO O (19)

They will be independent of x if m = 1 and 4 = 1/2, that is,
a uniform flow over a horizontal surface for which the surface
temperature varies with x'/2. Thus, the above equations can

be simplified to
1 Ra
I+ Er Pe,[(f)? =§E§75(ﬂ9/“0) (19)
0"+ CPe(f'0"+1"0") = L(f8—10) (20)

20

(b)




Technical Notes

e
n n
(a) (b)
FiG. 2. Dimensionless temperature profiles for non-Darcy natural convection with thermal dispersion
effects.
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F1G. 3. Dimensionless velocity profiles for non-Darcy mixed convection with thermal dispersion effects.
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where Pe; is the Peclet number based on the mean pore
diameter. The corresponding boundary conditions are

n=0, 6=1, f=0
0=0, f =1

(21)

n— oo, (22)
Forced convection

It is noted that the governing equations for forced con-
vection can be derived from equations (19) and (20) by
simply setting Ra/(Pe)*'? = 0. Therefore, they are given by

S"+ErPel(f)°) =0 23
0"+ C Pe,(f 6" +10) = 4(f'0—10). (24

RESULTS AND DISCUSSION

The transformed ordinary differential equations, with the
corresponding boundary conditions, are solved by numerical
integration using the Runge—Kutta method and the shooting
technique with a systematic guessing of #'(0) and f’(0). The
resulting profiles of dimensionless velocity and temperature
are shown in Figs. 1 and 2 for natural convection, and in
Figs. 3 and 4 for mixed convection.

Inertial and thermal dispersion effects on natural con-
vection can be observed in Figs. 1 and 2. For a small Rayleigh
number Ra,, the velocity profiles, also the temperature pro-

(c)

F1G. 4. Dimensionless temperature profiles for non-Darcy mixed convection with thermal dispersion effects.
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files, are almost identical for all Ergun numbers, which means
that the inertia effect is negligible at small Rayleigh numbers.
As the Rayleigh number increases, a larger Ergun number
will lead to a thicker hydrodynamic and thermal boundary
layer. The same relation is found for the dispersion coefficient
since thermal dispersion is very closely related to the inertia
effect. This can be verified from the figures that the thermal
dispersion has a more pronounced effect at a higher Rayleigh
number, exactly where initial effects are prevalent.

For mixed convection, it is found that for a fixed Ergun
number, a higher Peclet number Pe, tends to thicken the
hydrodynamic and thermal boundary layer. On the other
hand, for a fixed Peclet number, a larger Ergun number also
leads to a thicker boundary layer but a smaller slip velocity
at the wall, i.e. f7(0). Thermal dispersion effects display a
similar trend. However, it is observed that there exists a basic
difference between the velocity and temperature profiles. For
velocity profiles, the boundary-layer thickness increases with
the governing parameter Ra/(Pe)*?, while it decreases for
temperature profiles.

It is interesting to note that the solutions of equations (23)
and (24) turn out to be dependent on C and Pe, only. The
Ergun number has no influence over the heat transfer results.
The reason is that for forced convection, the analysis is based
on a fixed free stream velocity since the governing equations
are derived from the mixed convection results. Therefore,
inertial effects will show up in the total pressure gradient,
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FIG. 5. Heat transfer results for non-Darcy mixed convection with thermal dispersion effects.

instead of the heat transfer results. This point is also stated
in the previous study [1].

When the dispersion effect is taken into consideration, the
local heat transfer rate is computed from

@23)

where k. is the effective thermal conductivity of the porous
medium. With the definition of the Nusselt number, the heat
transfer coefficient can be expressed as:

natural convection

ij% = —[1+C(Ray)*’f'(0))0'(0) = [~ 0.(0)]nc; (26)
mixed convection
% = —[1+CPe, f/(0)0'(0) = [-8:(0]x; (27)
forced convection
I—,J:% = —[1+CPe,]6'(0). (28)

Each expression comprises two terms, the first is the con-
tribution due to molecular diffusion and the second is that
due to dispersion. Though the value of —§'(0), i.e. the con-
tribution by the molecular diffusion, decreases with an
increase of Ra/(Pe)*? for mixed convection and Ra, for
natural convection, overall heat transfer is increased due to
a significant contribution from dispersion.

Equation (27) is plotted in Fig. 5 as a function of
Raf(Pe)*?. The limiting cases of free and forced convection
are also shown as asymptotes. For a fixed dispersion
coefficient, the heat transfer coefficient increases with the
Peclet number Pe,, while it decreases with the Ergun number,
which clearly shows that inertial effects tend to reduce the
heat transfer. For a fixed Ergun number, the heat transfer
coefficient increases with both Peclet number and the thermal
dispersion coefficient, which indicates that dispersion will
enhance the heat transfer. The corresponding asymptotes are
obtained in the same manner as described before [1], which
consists of two steps. First, rewrite equation (27) as

Nu Nu | Ra |'?
Pe~ Ra'| Pe’?

- [FI%}{ —[1+C(Ra)’f (010 ©)}. (29)

Second, apply the relation between Er(Ra,) and Er Pe,

Ra, Y Ra
Er(Ra,;)¥? =ErPe,<;?72) =ErPe,,(W) . (30)

With a given Er Pe,and Ra/(Pe)*?, Er(Ra,)** is determined
from equation (30). Once Er(Ra,)** is specified, [— 6(0)),.
can be solved from equations (13) and (14). Therefore, the
free convection asymptote is obtained, from equation (29),
for each corresponding Ra/(Pe)*>.

The results can be best presented by the ratio of the heat
transfer coefficient for the non-Darcy flow to that for the
Darcy flow, i.e. 8.(0)/05(0). Figures 6 and 7 present these
ratios for free and mixed convection, respectively. As seen,
the ratio is always greater than unity. This is quite different
from our previous results [1] for which the ratio is always
less than unity when only the inertial effect is considered.
Thus, thermal dispersion can have an important role to play
in determining the heat transfer coefficient. Its effect at high
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Fi1G. 6. The ratios of heat transfer coefficient of non-Darcy
natural convection to that of Darcy flow.
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F1G. 7. The ratios of heat transfer coefficient of non-Darcy mixed convection to that of Darcy flow.

Rayleigh numbers needs to be considered carefully for an
accurate estimate of heat transfer coefficients.
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