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INTRODUCTION 

IN A RECENT paper [l], we have reported similarity solutions 
for steady, non-Darcy convection over a horizontal surface 
embedded in a saturated porous medium for the cases of 
natural, mixed and forced convection, As pointed out by 
Cheng [2] and Plumb [3], transverse thermal dispersion 
effects may become very important when inertial effects are 
prevalent. However, most previous studies [l, 471 on non- 
Darcy convection, either for natural or mixed convection, 
have not taken this effect into account. Only recently, Hong 
et al. [8] reported a study of non-Darcy natural convection 
along a vertical plate, in which thermal dispersion was in- 
cluded. Their results show that both inertia and dispersion 
are important at high Rayleigh numbers. Dispersion tends 
to enhance the heat transfer, while inertial effects decrease 
it. Whether heat transfer will increase, as compared to the 
Darcy case, depends on the balance between these mech- 
anisms. 

It is the purpose of this study to re-examine our previous 
results [I] by including thermal dispersion effects. Steady 
non-Darcy convection, in the form of natural, mixed and 
forced convection, is again considered for a heated horizontal 
surface embedded in a saturated porous medium. Under the 
assumed conditions, similarity solutions again exist for the 
case of constant surface heat flux. 

ANALYSIS 

Consider a two-dimensional non-Darcy flow over a hori- 
zontal, impermeable surface in a saturated porous medium. 
Having invoked the Boussinesq and boundary-layer approxi- 
mations, the governing equations based on the Ergun 
formulation are given by 

aZ+ K’ a a$ 2 Q+TZj ay [(->I mB dT = --- 
v ax (1) 

a+aT aijar a aT 
qG-axay=ayaeay [ 1 (2) 

where 

a, = a+a’. (3) 

t Current address : B-120 Engineering Research Center, 
Colorado State University, Fort Collins, CO 80523, U.S.A. 

The thermal dispersion effect is introduced by assuming the 
effective thermal diffusivity a, to have two components: a 
the molecular diffusivity and a’ the diffusivity due to thermal 
dispersion. Following the linear model proposed by Plumb 
[3], the dispersion diBu.sivity is proportional to the stream- 
wise velocity component, that is 

a’=Cud (4) 

where C is a constant, which has a value ranging from l/7 
to l/3. However, it has been pointed out by Hunt and Tien 
[9] that the solution obtained by assuming a constant dis- 
persion coefficient and neglecting the wall effects will provide 
an upper bound for the estimation of heat transfer results. 

The corresponding boundary conditions are 

y=O, T,=T,+Ad, v=O (5) 

Y-co, T= T,, u = 0 (natural convection) (6a) 

u = U, = Bx” (mixed convection). (6b) 

With the appropriate transformation, equations (1) and (2) 
can be further reduced to a set of ordinary differential equa- 
tions for which exact solutions are possible. The suitable 
similarity variables for such a transformation are those 
employed in the previous study [l], namely : 

for natural convection 

n = (R(r)“’ v 
X 

1(1 = a&r) “f(V) ; 

for mixed convection 

(7) 

(8) 

q = (Pe) 112 Y 
X 

$ = a(Pe) “‘f(q). 

(9) 

(10) 

Natural convection 
After transformation, the resulting equations are given by 

f”+ 4” y3x(u-1)13[(j,)2],+~~+ 4+ = 0 

[ 1 
K;y 

(11) 

AJ”ff’e_ !g ffy = ,.+cgp-11)/3 

[ 1 
$!g z’3(f”&+f’w). 

(12) 
These equations will be independent of x if 1 = l/2, that is, 
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NOMENCLATURE 

A constant defined in equation (5) u, v 
B constant defined in equation (6b) 

velocity components in the n- and y-directions 
U free stream velocity 

C coefficient of the thermal dispersion effect x, y Cartesian coordinates. 
d mean particle diameter or pore diameter 
Er Ergun number, K’a/dv Greek symbols 
f dimensionless stream function a, effective thermal diffusivity 

: 
acceleration of gravity a 
local heat transfer coefficient 

molecular thermal diffusivity 
a’ 

k, effective thermal conductivity of the saturated 
thermal diffusivity due to dispersion effect 

j3 thermal expansion coefficient of fluid 
porous medium independent similarity variable 

K permeability ;I 
K’ inertial coefficient of the Ergun equation 

dimensionless temperature, (T- T,)/( T, - T,) 
1 constant defined in equation (5) 

Nu local Nusselt number, hx/k P dynamic viscosity 
P pressure v kinematic viscosity 
Pe Peclet number, U&a P fluid density 
Ped Peclet number based on the pore diameter, U,d/a t,b stream function, equations (8) and (10). 
Ra Rayleigh number, Kg/?( T, - T,)x/av 
Ra, Rayleigh number based on the pore diameter, 

KgjAd 312/av 
Subscripts 

e effective properties 
T temperature mx mixed convection 
T, surface temperature nc natural convection 
T, ambient temperature or free stream temperature 0 properties related to Darcy flows. 

the surface temperature varies with x1/‘. Thus, equations (11) Mixed convection 
and (12) can be simplified to 

f”+Er(Ru,)“‘[(f’)‘]‘+ i - z0’ = 0 (13) 

:(f’e -f(Y) = 8” + C(Ra,) *‘X(f’V +f”6) (14) 

where I&z,, is the modified Rayleigh number based on the 
mean pore diameter. The grouping Er is a new dimensionless 
parameter which we tentatively name the Ergun number. It 
is defined as Er = K’a/dv. The Ergun number characterizes 
the porous system under investigation since it represents the 
structure of the porous matrix, K’/d, and the thermophysical 
properties of the porous medium, a/v. This parameter is a 
direct measurement of inertial effects, and its importance has 
also been recognized by Prasad and Tuntomo [IO], in a study 
of inertial effects on natural convection in a vertical cavity. 

The corresponding boundary conditions are 

rJ=o, e=1, f=O 

n+co, fI=o, f’=O. 

(15) 

(16) 

With the similarity variables given in equations (9) and 
(lo), the governing equations are transformed to 

AOf'- q! f0’= e.++(f”e+f’s.). (18) 

They will be independent of x if m = 1 and I = l/2, that is, 
a uniform flow over a horizontal surface for which the surface 
temperature varies with x”~. Thus, the above equations can 
be simplified to 

f”+ErPe,[(f’)‘]’ = f$(r$‘-0) (19) 

~+cP~,(f’eu+fw) = f(f’e-fw) (20) 
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FIG. 1. Dimensionless velocity profiles for non-Darcy natural convection with thermal dispersion effects. 
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FIG. 2. Dimensionless temperature profiles for non-Darcy natural convection with thermal dispersion 
effects. 
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FIG. 3. Dimensionless velocity profiles for non-Darcy mixed convection with thermal dispersion effects. 
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where Pe,, is the Peclet number based on the mean pore 
diameter. The corresponding boundary conditions are 

?J=o, e=1, f=O (21) 

q+co, e=o, f’=l. (22) 

Forced convection 
It is noted that the governing equations for forced con- 

vection can be derived from equations (19) and (20) by 
simply setting Ra/(Pe) w = 0. Therefore, they are given by 

f”+ErPe,[(f)*] = 0 

W+CPe,(fW+f@) = t(f’e-f@). 

(23) 

(24) 

RESULTS AND DISCUSSION 

The transformed ordinary differential equations, with the 
corresponding boundary conditions, are solved by numerical 
integration using the RungeKutta method and the shooting 
technique with a systematic guessing of O’(O) andf’(0). The 
resulting pro&s of dimensionless velocity and temperature 
are shown in Figs. 1 and 2 for natural convection, and in 
Figs. 3 and 4 for mixed convection. 

Inertial and thermal dispersion effects on natural con- 
vection can be observed in Figs. 1 and 2. For a small Rayleigh 
number Ra,,, the velocity profiles, also the temperature pro- 

files, are almost identical for all Ergun numbers, which means 
that the inertia effect is negligible at small Rayleigh numbers. 
As the Rayleigh number increases, a larger Ergun number 
will lead to a thicker hydrodynamic and thermal boundary 
layer. The same relation is found for the dispersion coefficient 
since thermal dispersion is very closely related to the inertia 
effect. This can be verified from the figures that the thermal 
dispersion has a more pronounced effect at a higher Rayleigh 
number, exactly where initial effects are prevalent. 

For mixed convection, it is found that for a fixed Ergun 
number, a higher Peclet number Ped tends to thicken the 
hydrodynamic and thermal boundary layer. On the other 
hand, for a fixed Peclet number, a larger Ergun number also 
leads to a thicker boundary layer but a smaller slip velocity 
at the wall, i.e. f’(0). Thermal dispersion effects display a 
similar trend. However, it is observed that there exists a basic 
difference between the velocity and temperature profiles. For 
velocity profiles, the boundary-layer thickness increases with 
the governing parameter Ra/(Pe)3’2, while it decreases for 
temperature profiles. 

It is interesting to note that the solutions of equations (23) 
and (24) turn out to be dependent on C and Ped only. The 
Ergun number has no influence over the heat transfer results. 
The reason is that for forced convection, the analysis is based 
on a fixed free stream velocity since the governing equations 
are derived from the mixed convection results. Therefore, 
inertial effects will show up in the total pressure gradient, 
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FtG. 4. Dimensionless temperature profiles for non-Darcy mixed convection with thermal dispersion effects. 
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FIG. 5. Heat transfer results for non-Darcy mixed convection with thermal dispersion effects. 

instead of the heat transfer results. This point is also stated 
in the previous study [ 11. 

When the dispersion effect is taken into consideration, the 
local heat transfer rate is computed from 

where /c, is the effective thermal conductivity of the porous 
medium. With the definition of the Nusselt number, the heat 
transfer coefficient can be expressed as : 

natural convection 

NU 
- - - [1 + C(R~,)~‘~f’(O)]fl’(0) = [-0:(O)], ; 
RaU3 - 

(26) 

mixed convection 

Nu 
-= -]l+CPe,f’(O)l~(O) = [-9:(O)],; (27) 

forced convection 

Nu 
pe”2 = -[l + CPe,]B’(O). 

Each expression comprises two terms, the first is the con- 
tribution due to molecular diffusion and the second is that 
due to dispersion. Though the value of -8’(O), i.e. the con- 
tribution by the molecular diffusion, decreases with an 
increase of Ra/(Pe) “* for mixed convection and Ru,, for 
natural convection, overall heat transfer is increased due to 
a significant contribution from dispersion. 

Equation (27) is plotted in Fig. 5 as a function of 
Ra/(Pe)“*. The limiting cases of free and forced convection 
are also shown as asymptotes. For a fixed dispersion 
coefficient, the heat transfer coefficient increases with the 
Peclet number F’Q, while it decreases with the Ergun number, 
which clearly shows that inertial effects tend to reduce the 
heat transfer. For a fixed Ergun number, the heat transfer 
coefficient increases with both Peclet number and the thermal 
dispersion coefficient, which indicates that dispersion will 
enhance the heat transfer. The corresponding asymptotes are 
obtained in the same manner as described before [I], which 
consists of two steps. First, rewrite equation (27) as 

Nu Nu Ra w 
p= __ __ 
Pe”’ [ 1 Ral” Pe3/Z 

= g {-[I + C(Rad)2’3f’(0)]0’(O)}. (29) 
[ 1 

915 

Second, apply the relation between Er(Ra,) and Er Pe,, 

Er(Rad)“” = ErPps($~’ = ErPed(j$~‘. (W 

With a given Er Ped and Ra/(Pe)3’2, Er(Ra,) 2’3 is determined 
from equation (30). Once Er(I@J213 is speciiied, [-K(O)], 
can be solved from equations (13) and (14). Therefore, the 
free convection asymptote is obtained, from equation (29), 
for each corresponding Ra/(Pe) 3’2. 

The results can be best presented by the ratio of the heat 
transfer coefficient for the non-Darcy flow to that for the 
Darcy flow, i.e. &(O)/&(O). Figures 6 and 7 present these 
ratios for free and mixed convection, respectively. As seen, 
the ratio is always greater than unity. This is quite different 
from our previous results [1] for which the ratio is always 
less than unity when only the inertial effect is considered. 
Thus, thermal dispersion can have an important role to play 
in determining the heat transfer coefficient. Its effect at high 

FIG. 6. The ratios of heat transfer coefficient of non-Darcy 
natural convection to that of Darcy flow. 
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FIG. 7. The ratios of heat transfer coefficient of non-Darcy mixed convection to that of Darcy flow. 

Rayleigh numbers needs to be considered carefully for an 
accurate estimate of heat transfer coefficients. 
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